Cara Pintar Menganalisa Sendiri Hasil Laboratorium Urine

Cara menganalisa Hasil Laboratorium urine

clip_image001

Terdapat beberapa macam pemeriksaan urin, yaitu urinalisis, tes kehamilan, tes narkoba, biakan kuman, kepekaan obat, dsb. Urinalisis atau tes urin rutin digunakan untuk mengetahui fungsi ginjal dan mengetahui adanya infeksi pada ginjal atau saluran kemih. Tes ini terdiri dari dua macam, yaitu : tes makroskopik dan tes mikroskopik.
Tes makroskopik dilakukan dengan cara visual. Pada tes ini biasanya menggunakan reagen strip yang dicelupkan sebentar ke dalam urine lalu mengamati perubahan warna yang terjadi pada strip dan membandingkannya dengan grafik warna standar. Tes ini bertujuan mengetahui pH, berat jenis (BJ), glukosa, protein, bilirubin, urobilinogen, darah, keton, nitrit dan lekosit esterase.

Tes mikroskopik dilakukan dengan memutar (centrifuge) urin lalu mengamati endapan urin di bawah mikroskop. Tes ini bertujuan untuk mengetahui : (1) unsur-unsur organik (sel-sel : eritrosit, lekosit, epitel), silinder, silindroid, benang lendir; (2) unusur anorganik (kristal, garam amorf); (3) elemen lain (bakteri, sel jamur, parasit Trichomonas sp., spermatozoa).

pH
Ini adalah derajat keasaman air seni. pH urine pada orang normal adalah 4,8 – 7,4. pH di bawah 7,0 disebut asam (acid) dan pH di atas 7,0 dinamakan basa (alkali). Beberapa keadaan dapat menyebabkan pH urine menjadi basa , misalnya : diet vegetarian, setelah makan, muntah hebat, infeksi saluran kencing oleh bakteri Proteus atau Pseudomonas, urine yang disimpan lama, terapi obat-obatan tertentu, atau gangguan proses pengasaman pada bagian tubulus ginjal. Sebaliknya, pH urine bisa menjadi rendah atau asam dapat dijumpai pada : diabetes, demam pada anak, asidosis sistemik, terapi obat-obatan tertentu.

Berat Jenis
Berat jenis (BJ) atau specific gravity (SG) dipengaruhi oleh tingkat keenceran air seni. Pada orang normal, berat jenis urine adalah 1,015 – 1,025. Seberapa banyak Anda minum atau berkemih akan mempengaruhi BJ urine; semakin banyak berkemih, akan semakin rendah BJ, demikian sebaliknya. Adanya protein atau glukosa dalam urine akan meningkatkan BJ urine. Jika ada protein dalam urine, maka setiap 1% proteinuria BJ bertambah 0,003. Jika ada glukosa dalam urine, maka setiap 1% glukosuria BJ bertambah 0,004.

Glukosa
Biasanya tidak ada glukosa dalam air seni. Adanya glukosa dalam urine (disebut glukosuria) harus diwaspadai adanya gangguan atau penyakit. Jika glukosuria bersama hiperglikemia (=peningkatan kadar gula dalam darah), maka kemungkinan adalah : diabetes mellitus (DM), sindrom Cushing, penyakit pankreas, kelainan susunan syaraf pusat, gangguan metabolisme berat (misalnya pada kebakaran hebat, penyakit hati lanjut, sepsis, dsb), atau oleh karena obat-obatan kortikosteroid, thiazide, obat kontrasepsi oral).
Jika glukosuria tanpa hiperglikemia dapat dijumpai pada : kelainan fungsi tubulus ginjal, kehamilan, gula selain glukosa dalam urine atau makan buah-buahan sangat banyak.

Protein
Biasanya tidak ada protein yang terdeteksi pada urinalisis. Adanya protein dalam urine disebut proteinuria. Proteinuria menunjukkan kerusakan pada ginjal, adanya darah dalam air kencing atau infeksi kuman. Beberapa keadaan yang dapat menyebabkan proteinuria adalah : penyakit ginjal (glomerulonefritis, nefropati karena diabetes, pielonefritis, nefrosis lipoid), demam, hipertensi, multiple myeloma, keracunan kehamilan (pre-eklampsia, eklampsia), infeksi saluran kemih (urinary tract infection). Proteinuria juga dapat dijumpai pada orang sehat setelah kerja jasmani, urine yang pekat atau stress karena emosi

Bilirubin dan Urobilinogen
Bilirubin adalah produk perombakan hemoglobin (zat warna merah darah) oleh sel-sel retikuloendotel yang tersebar di seluruh tubuh. Bilirubin semula bersifat tidak larut air, kemudian oleh hati dikonjugasi sehingga larut air. Selanjutnya, bakteri-bakteri dalam usus akan mengubah bilirubin menjadi urobilinogen. Karena proses oksidasi, urobilinogen berubah menjadi urobilin, suatu zat yang memberikan warna yang khas pada urine. Dalam keadaan normal bilirubin tidak ada dalam urine. Adanya bilirubin dalam urine (bilirubinuria) menggambarkan kerusakan sel hati (misalnya hepatitis) atau sumbatan saluran empedu.
Peningkatan urobilinogen dalam urine menggambarkan adanya kerusakan sel hati (misalnya hepatitis) atau peningkatan perombakan hemoglobin. Sedangkan pada sumbatan saluran empedu, urobilin tidak dijumpai dalam urine.

Darah
Dalam keadaan normal, tidak ada darah atau hemoglobin dalam air seni. Adanya darah dalam urine (hemoglobinuria) dapat menunjukkan adanya trauma atau perdarahan pada ginjal atau saluran kemih, infeksi, tumor, batu ginjal.

Nitrit
Dalam urine orang normal terdapat nitrat sebagai hasil metabolism protein. Jika terdapat infeksi saluran kemih (urinary tract infection) oleh kuman dari spesies Enterobacter, Citrobacter, Escherichia, Proteus dan Klebsiela yang mengandung enzim reduktase, maka nitrat akan diubah menjadi nitrit.

Keton
Keton merupakan sampah hasil metabolisme lemak. Jika persediaan glukosa menurun, maka untuk mencukupi suplai energi, cadangan lemak yang ada dimetabolisme. Peningkatan metabolisme lemak ini menyebabkan penumpukan keton (asam betahidroksi butirat, asam aseto asetat dan aseton) dalam urine atau dinamakan ketonuria. Ketonuria dapat dijumpai pada penderita diabetes mellitus atau pada orang yang kelaparan.

Lekosit Esterase
Lekosit esterase adalah enzim yang dikeluarkan oleh sel lekosit netrofil. Dalam keadaan normal tidak ditemukan lekosit esterase. Adanya lekosit esterase dalam air seni menunjukkan infeksi saluran kemih (urinary tract infection).

Sedimen / Endapan
Pemeriksaan sedimen urine dilakukan secara mikroskopik untuk mengetahui adanya : (1) material organik, yaitu sel-sel (eritrosit, lekosit, epitel), silinder (cast) dan bentuk lain : silindroid, benang lender; (2) material anorganik, yaitu garam amorf dan kristal; (3) elemen lain, seperti bakteri, parasit Trichomonas sp., jamur (misal Candida), atau spermatozoa.

Eritrosit. Dalam keadaan normal, terdapat 0 – 2 sel eritrosit dalam urine. Jumlah eritrosit yang meningkat menggambarkan adanya trauma atau perdarahan pada ginjal dan saluran kemih, infeksi, tumor, batu ginjal.

Lekosit. Dalam keadaan normal, jumlah lekosit dalam urine adalah 0 – 4 sel. Peningkatan jumlah lekosit menunjukkan adanya peradangan, infeksi atau tumor.

Epitel. Ini adalah sel yang menyusun permukaan dinding bagian dalam ginjal dan saluran kemih. Sel-sel epitel hampir selalu ada dalam urine, apalagi yang berasal dari kandung kemih (vesica urinary), urethra dan vagina.

Silinder (cast). Ini adalah mukoprotein yang dinamakan protein Tam Horsfal yang terbentuk di tubulus ginjal. Terdapat beberapa jenis silinder, yaitu : silinder hialin, silinder granuler, silinder eritrosit, silinder lekosit, silinder epitel dan silinder lilin (wax cast). Silinder hialin menunjukkan kepada iritasi atau kelainan yang ringan. Sedangkan silinder-silinder yang lainnya menunjukkan kelainan atau kerusakan yang lebih berat pada tubulus ginjal.

Kristal. Dalam keadaan fisiologik / normal, garam-garam yang dikeluarkan bersama urine (misal oksalat, asam urat, fosfat, cystin) akan terkristalisasi (mengeras) dan sering tidak dianggap sesuatu yang berarti. Pembentukan kristal atau garam amorf dipengaruhi oleh jenis makanan, banyaknya makanan, kecepatan metabolisme dan konsentrasi urine (tergantung banyak-sedikitnya minum).
Yang perlu diwaspadai jika kristal-kristal tersebut ternyata berpotensi terhadap pembentukan batu ginjal. Batu terbentuk jika konsentrasi garam-garam tersebut melampaui keseimbangan kelarutan. Butir-butir mengendap dalam saluran urine, mengeras dan terbentuk batu.

Silindroid. Ini adalah material yang menyerupai silinder. Tidak memiliki arti yang banyak, mungkin sekali berrati adanya radang yang ringan.

Benang lendir (mucus filaments). Ini didapat pada iritasi permukaan selaput lendir saluran kemih.

Spermatozoa, bisa ditemukan dalam urin pria atau wanita dan tidak memiliki arti klinik.

Bakteri. Bakteri yang dijumpai bersama lekosit yang meningkat menunjukkan adanya infeksi dan dapat diperiksa lebih lanjut dengan pewarnaan Gram atau dengan biakan (kultur) urin untuk identifikasi. Tetapi jika ada bakteri namun sedimen “bersih”, kemungkinan itu merupakan cemaran (kontaminasi) saja.

Sel jamur menunjukkan infeksi oleh jamur (misalnya Candida) atau mungkin hanya cemaran saja.

Trichomonas sp. Ini adalah parasit yang bila dijumpai dalam urin dapat menunjukkan infeksi pada saluran kemih pada laki-laki maupun perempuan.

Setelah anda membaca begitu banyak hasil diatas, maka yang kira-kira bisa anda simpulkan dari penyakit anda saat ini ?? … semoga dengan di bekali pengetahuan tentang cara mengetahui hasil laboratorium urine anda semakain bisa menjaga kesehatan anda …..

Penyakit Asma (Asthma) Dan Gejalanya

Penyakit Asma (Asthma) adalah suatu penyakit kronik (menahun) yang menyerang saluran pernafasan (bronchiale) pada paru dimana terdapat peradangan (inflamasi) dinding rongga bronchiale sehingga mengakibatkan penyempitan saluran nafas yang akhirnya seseorang mengalami sesak nafas. Penyakit Asma paling banyak ditemukan di negara maju, terutama yang tingkat polusi udaranya tinggi baik dari asap kendaraan maupun debu padang pasir.
GEJALA
Adapun tanda dan gejala penyakit asma diantaranya :
- Pernafasan berbunyi (wheezing/mengi/bengek) terutama saat mengeluarkan nafas (exhalation). Tidak semua penderita asma memiliki pernafasan yang berbunyi, dan tidak semua orang yang nafasnya terdegar wheezing adalah penderita asma!
- Adanya sesak nafas sebagai akibat penyempitan saluran bronki (bronchiale).
- Batuk berkepanjangan di waktu malam hari atau cuaca dingin.
- Adanya keluhan penderita yang merasakan dada sempit..
- Serangan asma yang hebat menyebabkan penderita tidak dapat berbicara karena kesulitannya dalam mengatur pernafasan.
Pada usia anak-anak, gejala awal dapat berupa rasa gatal dirongga dada atau leher. Selama serangan asma, rasa kecemasan yang berlebihan dari penderita dapat memperburuk keadaanya. Sebagai reaksi terhadap kecemasan, penderita juga akan mengeluarkan banyak keringat.
PENYEBAB
Sampai saat ini penyebab penyakit asma belum diketahui secara pasti meski telah banyak penelitian oleh para ahli. Teori atau hypotesis mengenai penyebab seseorang mengidap asma belum disepakati oleh para ahli didunia kesehatan.
Namun demikian yang dapat disimpulkan adalah bahwa pada penderita asma saluran pernapasannya memiliki sifat yang khas yaitu sangat peka terhadap berbagai rangsangan (bronchial hyperreactivity = hipereaktivitas saluran napas) seperti polusi udara (asap, debu, zat kimia), serbuk sari, udara dingin, makanan, hewan berbulu, tekanan jiwa, bau/aroma menyengat (misalnya;parfum) dan olahraga.
Selain itu terjadinya serangan asma sebagai akibat dampak penderita mengalami infeksi saluran pernafasan atas (ISPA) baik flu ataupun sinisitis. Serangan penyakit asma juga bisa dialami oleh beberapa wanita dimasa siklus menstruasi, hal ini sangat jarang sekali.
Angka peningkatan penderita asma dikaitkan dengan adanya faktor resiko yang mendukung seseorang menderita penyakit asma, misalnya faktor keturunan. Jika seorang ibu atau ayah menderita penyakit asma, maka kemungkinan besar adanya penderita asma dalam anggota keluarga tersebut.
PENGOBATAN
Penyakit Asma (Asthma) sampai saat ini belum dapat diobati secara tuntas, ini artinya serangan asma dapat terjadi dikemudian hari. Penanganan dan pemberian obat-obatan kepada penderita asma adalah sebagai tindakan mengatasi serangan yang timbul yang mana disesuaikan dengan tingkat keparahan dari tanda dan gejala itu sendiri. Prinsip dasar penanganan serangan asma adalah dengan pemberian obat-obatan baik suntikan (Hydrocortisone), syrup ventolin (Salbutamol) atau nebulizer (gas salbutamol) untuk membantu melonggarkan saluran pernafasan.
Pada kasus-kasus yang ringan dimana dirasakan adanya keluhan yang mengarah pada gejala serangan asma atau untuk mencegah terjadinya serangan lanjutan, maka tim kesehatan atau dokter akan memberikan obat tablet seperti Aminophylin dan Prednisolone. Bagi penderita asma, disarankan kepada mereka untuk menyediakan/menyimpan obat hirup (Ventolin Inhaler) dimanapun mereka berada yang dapat membantu melonggarkan saluran pernafasan dikala serangan terjadi.
PENCEGAHAN
Langkah tepat yang dapat dilakukan untuk menghindari serangan asma adalah menjauhi faktor-faktor penyebab yang memicu timbulnya serangan asma itu sendiri. Setiap penderita umumnya memiliki ciri khas tersendiri terhadap hal-hal yang menjadi pemicu serangan asmanya.
Setelah terjadinya serangan asma, apabila penderita sudah merasa dapat bernafas lega akan tetapi disarankan untuk meneruskan pengobatannya sesuai obat dan dosis yang diberikan oleh dokter.

Kupas Tuntas Tentang Elektrokardiogram Bagian 5 (Tamat)

Kumpulan sadapan klinis

325px-Contiguous_leads
@Diagram yang menunjukkan sadapan-sadapan yang berdampingan dengan warna yang sama
Jumlah sadapan EKG ada 12, masing-masing merekam aktivitas kelistrikan jantung dari sudut yang berbeda, yang juga berkaitan dengan area-area anatomis yang berbeda dengan tujuan mengidentifikasi iskemia korner akut atau lesi. 2 sadapan yang melihat ke area anatomis yang sama di jantung dikatakan bersebelahan (lihat tabel berkode warna).
  • Sadapan inferior (sadapan II, III dan aVF) memandang aktivitas listrik dari tempat yang menguntungkan di dinding inferior (atau diafragmatik) ventrikel kiri.
  • Sadapan lateral (I, aVL, V5 dan V6) melihat aktivitas kelistrikan dari titik yang menguntungkan di dinding lateral ventrikel kiri. Karena elektrode positif untuk sadapan I dan aVL terletak di bahu kiri, sadapan I dan aVL kadang-kadang disebut sebagai sadapan lateral atas. Karena ada di dada pasien, elektode positif untuk sadapan V5 dan V6 disebut sebagai sadapan lateral bawah.
  • Sadapan septum, V1 and V2 memandang aktivitas kelistrikan dari titik yang menguntungkan di dinding septum anatomi kiri, yang sering dikelmpkkan bersama dengan sadapan anterior.
  • Sadapan anterior, V3 dan V4 melihat aktivitas kelistrikan dari tempat yang menguntungkan di anterior ventrikel kiri.
  • Di samping itu, setiap 2 sadapan prekordial yang berdampingan satu sama lain dianggap bersebelahan. Sebagai contoh, meski V4 itu sadapan anterior dan V5 lateral, 2 sadapan itu bersebelahan karena berdekatan satu sama lain.
  • Sadapan aVR tak menampakkan pandangan khusus atas ventrikel kiri. Sebagai gantinya, sadapan ini melihat bagian dalam dinding endokardium dari sudut pandangnya di bahu kanan.
Sumbu
Sumbu kelistrikan jantung merujuk ke arah umum muka gelombang depolarisasi jantung (atau rerata vektor listrik) di bidang frontal. Biasanya berorientasi di arah bahu kanan ke kaki kiri, yang berhubungan dengan kuadran inferior kiri sistem rujukan heksaksial, meski -30o hingga +90o dianggap normal.
325px-Rapid_Axis_Vector
@ Diagram yang menunjukkan bagaimana polaritas kompleks QRS di sadapan I, II, dan III dapat digunakan untuk memperkirakan sumbu listrik jantung dalam bidang frontal.
  • Deviasi sumbu kiri (-30o hingga -90o) dapat menandakan blok fasciculus anterior kiri atau gelombang Q dari infark otot jantung inferior.
  • Deviasi sumbu kanan (+90o hingga +180o) dapat menandakan blok fasciculus posterior kiri, gelombang Q dari infark otot jantung lateral atas, atau pola nada ventrikel kanan.
  • Dalam keadaan blok cabang berkas kanan, deviasi kanan atau kiri dapat menandakan blok bifasciculus.

Bila ingin mencari cara cepat memperoleh artikel ini Silahkan Downloads Artikel Diatas Secara Gratis Klik disini

Kupas Tuntas Tentang Elektrokardiogram Bagian 4

Sadapan dasar
Sebuah elektrode tambahan (biasanya hijau) terdapat di EKG 4 dan 12 sadapan modern, yang disebut sebagai sadapan dasar yang menurut kesepakatan ditempatkan di kaki kiri, meski secara teoretis dapat ditempatkan di manapun pada tubuh. Dengan EKG 3 sadapan, saat 1 dipol dipandang, sisanya menjadi sadapan dasar bila tiada.
Gelombang dan interval
Sebuah EKG yang khas melacak detak jantung normal (atau siklus jantung) terdiri atas 1 gelombang P, 1 kompleks QRS dan 1 gelombang T. Sebuah gelombang U kecil normalnya terlihat pada 50-75% di EKG. Voltase garis dasar elektrokardiogram dikenal sebagai garis isoelektrik. Khasnya, garis isoelektrik diukur sebagai porsi pelacakan menyusul gelombang T dan mendahului gelombang P berikutnya.
Analisis irama
Ada beberapa aturan dasar yang dapat diikuti untuk mengenali irama jantung pasien. Bagaimana denyutannya? Teratur atau tidak? Adakah gelombang P? Adakah kompleks QRS? Adakah perbandingan 1:1 antara gelombang P dan kompleks QRS? Konstankah interval PR?
Gelombang P
Selama depolarisasi atrium normal, vektor listrik utama diarahkan dari nodus SA ke nodus AV, dan menyebar dari atrium kanan ke atrium kiri. Vektor ini berubah ke gelombang P di EKG, yang tegak pada sadapan II, III, dan aVF (karena aktivitas kelistrikan umum sedang menuju elektrode positif di sadapan-sadapan itu), dan membalik di sadapan aVR (karena vektor ini sedang berlalu dari elektrode positif untuk sadapan itu). Sebuah gelombang P harus tegak di sadapan II dan aVF dan terbalik di sadapan aVR untuk menandakan irama jantung sebagai Irama Sinus.
  • Hubungan antara gelombang P dan kompleks QRS membantu membedakan sejumlah aritmia jantung.
  • Bentuk dan durasi gelombang P dapat menandakan pembesaran atrium.
Interval PR
Interval PR diukur dari awal gelombang P ke awal kompleks QRS, yang biasanya panjangnya 120-200 ms. Pada pencatatan EKG, ini berhubungan dengan 3-5 kotak kecil.
  • Interval PR lebih dari 200 ms dapat menandakan blok jantung tingkat pertama.
  • Interval PR yang pendek dapat menandakan sindrom pra-eksitasi melalui jalur tambahan yang menimbulkan pengaktifan awal ventrikel, seperti yang terlihat di Sindrom Wolff-Parkinson-White.
  • Interval PR yang bervariasi dapat menandakan jenis lain blok jantung.
  • Depresi segmen PR dapat menandakan lesi atrium atau perikarditis.
  • Morfologi gelombang P yang bervariasi pada sadapan EKG tunggal dapat menandakan irama pacemaker ektopik seperti pacemaker yang menyimpang maupun takikardi atrium multifokus
Kompleks QRS
325px-QRS_nomenclature
@ Sejumlah kompleks QRS beserta tatanamanya.
 
 
 
 
Kompleks QRS adalah struktur EKG yang berhubungan dengan depolarisasi ventrikel. Karena ventrikel mengandung lebih banyak massa otot daripada atrium, kompleks QRS lebih besar daripada gelombang P. Di samping itu, karena sistem His/Purkinje mengkoordinasikan depolarisasi ventrikel, kompleks QRS cenderung memandang "tegak" daripada membundar karena pertambahan kecepatan konduksi. Kompleks QRS yang normal berdurasi 0,06-0.10 s (60-100 ms) yang ditunjukkan dengan 3 kotak kecil atau kurang, namun setiap ketidaknormalan konduksi bisa lebih panjang, dan menyebabkan perluasan kompleks QRS.
Tak setiap kompleks QRS memuat gelombang Q, gelombang R, dan gelombang S. Menurut aturan, setiap kombinasi gelombang-gelombang itu dapat disebut sebagai kompleks QRS. Namun, penafsiran sesungguhnya pada EKG yang sulit memerlukan penamaan yang pasti pada sejumlah gelombang. Beberapa penulis menggunakan huruf kecil dan besar, bergantung pada ukuran relatif setiap gelombang. Sebagai contoh, sebuah kompleks Rs akan menunjukkan defleksi positif, sedangkan kompleks rS akan menunjukkan defleksi negatif. Jika kedua kompleks itu dinamai RS, takkan mungkin untuk menilai perbedaan ini tanpa melihat EKG yang sesungguhnya.
  • Durasi, amplitudo, dan morfologi kompleks QRS berguna untuk mendiagnosis aritmia jantung, abnormalitas konduksi, hipertrofi ventrikel, infark otot jantung, gangguan elektrolit, dan keadaan sakit lainnya.
  • Gelombang Q bisa normal (fisiologis) atau patologis. Bila ada, gelombang Q yang normal menggambarkan depolarisasi septum interventriculare. Atas alasan ini, ini dapat disebut sebagai gelombang Q septum dan dapat dinilai di sadapan lateral I, aVL, V5 dan V6.
  • Gelombang Q lebih besar daripada 1/3 tinggi gelombang R, berdurasi lebih besar daripada 0,04 s (40 ms), atau di sadapan prekordial kanan dianggap tidak normal, dan mungkin menggambarkan infark miokardium.
300px-ECG_principle_slow
@ Animasi gelombang EKG yang normal.
 
 
 
 
 
 
Segmen ST
Segmen ST menghubungkan kompleks QRS dan gelombang T serta berdurasi 0,08-0,12 s (80-120 ms). Segmen ini bermula di titik J (persimpangan antara kompleks QRS dan segmen ST) dan berakhir di awal gelombang T. Namun, karena biasanya sulit menentukan dengan pasti di mana segmen ST berakhir dan gelombang T berawal, hubungan antara segmen ST dan gelombang T harus ditentukan bersama. Durasi segmen ST yang khas biasanya sekitar 0,08 s (80 ms), yang pada dasarnya setara dengan tingkatan segmen PR dan TP.
  • Segmen ST normal sedikit cekung ke atas.
  • Segmen ST yang datar, sedikit landai, atau menurun dapat menandakan iskemia koroner.
  • Elevasi segmen ST bisa menandakan infark otot jantung. Elevasi lebih dari 1 mm dan lebih panjang dari 80 ms menyusul titik J. Tingkat ukuran ini bisa positif palsu sekitar 15-20% (yang sedikit lebih tinggi pada wanita daripada pria) dan negatif palsu sebesar 20-30%.
Gelombang T
Gelombang T menggambarkan repolarisasi (atau kembalinya) ventrikel. Interval dari awal kompleks QRS ke puncak gelombang T disebut sebagai periode refraksi absolut. Separuh terakhir gelombang T disebut sebagai periode refraksi relatif (atau peride vulnerabel).
Pada sebagian besar sadapan, gelombang T positif. Namun, gelombang T negatif normal di sadapan aVR. Sadapan V1 bisa memiliki gelombang T yang positif, negatif, atau bifase. Di samping itu, tidak umum untuk mendapatkan gelombang T negatif terisolasi di sadapan III, aVL, atau aVF.
  • Gelombang T terbalik (atau negatif) bisa menjadi iskemia koroner, sindrom Wellens, hipertrofi ventrikel kiri, atau gangguan SSP.
  • Gelombang T yang tinggi atau "bertenda" bisa menandakan hiperkalemia. Gelombang T yang datar dapat menandakan iskemia koroner atau hipokalemia.
  • Penemuan elektrokardiografi awal atas infark otot jantung akut kadang-kadang gelombang T hiperakut, yang dapat dibedakan dari hiperkalemia oleh dasar yang luas dan sedikit asimetri.
  • Saat terjadi abnormalitas konduksi (mis., blok cabang berkas, irama bolak-balik), gelombang T harus didefleksikan berlawanan dengan defleksi terminal kompleks QRS, yang dikenal sebagai kejanggalan gelombang T yang tepat.
Interval QT
Interval QT diukur dari awal kompleks QRS ke akhir gelombang T. Interval QT yang normal biasanya sekitar 0,40 s. Interval QT di samping yang terkoreksi penting dalam diagnosis sindrom QT panjang dan sindrom QT pendek. Interval QT beragam berdasarkan pada denyut jantung, dan sejumlah faktor koreksi telah dikembangkan untuk mengoreksi interval QT untuk denyut jantung.
Cara yang paling umum digunakan untuk mengoreksi interval QT untuk denyut pernah dirumuskan oleh Bazett dan diterbitkan pada tahun 1920. Rumus Bazett adalah 4893aedfc50ada154b1b1ef2cf1f47d0, di mana QTc merupakan interval QT yang dikoreksi untuk denyut, dan RR adalah interval dari bermulanya satu kompleks QRS ke bermulanya kompleks QRS berikutnya, diukur dalam detik. Namun, rumus ini cenderung tidak akurat, dan terjadi kelebihan koreksi di denyut jantung tinggi dan kurang dari koreksi di denyut jantung rendah.
Gelombang U
Gelombang U tak selalu terlihat. Gelombang ini khasnya kecil, dan menurut definisi, mengikuti gelombang T. Gelombang U diperkirakan menggambarkan repolarisasi otot papillaris atau serabut Purkinje. Gelombang U yang menonjol sering terlihat di hipokalemia, namun bisa ada di hiperkalsemia, tirotoksikosis, atau pemajanan terhadap digitalis, epinefrin, dan antiaritmia Kelas 1A dan 3, begitupun di sindrom QT panjang bawaan dan di keadaan pendarahan intrakranial. Sebuah gelombang U yang terbalik dapat menggambarkan iskemia otot jantung atau kelebihan muatan volume di ventrikel kiri.
Bersambung …..
Bila ingin mencari cara cepat memperoleh artikel ini Silahkan Downloads Artikel Diatas Secara Gratis Klik disini

Kupas Tuntas Tentang Elektrokardiogram Bag. 3

 

Sadapan

Sadapan I, II dan III disebut sadapan ekstremitas karena pernah pokoq elektrokardiogafi benar-benar harus menempatkan tangan dan kaki mereka di ember air asin untuk mendapatkan sinyal dari galvanometer senar Einthoven. EKG seperti itu membentuk dasar yang kini dikenal sebagai segitiga Einthoven. Akhirnya, elektrode ditemukan sehingga dapat ditempatkan secara langsung di kulit pasien. Meskipun ember air asin sebentar saja diperlukannya, elektrode-elektrode itu masih ditempatkan di lengan dan kaki pasien untuk mengira-ngirakan sinyal yang diperoleh dari ember air asin itu. Elektrode-elektrode itu masih menjadi 3 sadapan pertama EKG 12 sadapan modern.
  • Sadapan I adalah dipol dengan elektrode negatif (putih) di lengan kanan dan elektrode positif (hitam) di lengan kiri.
  • Sadapan II adalah dipol dengan elektrode negatif (putih) di lengan kanan dan elektrode positif (merah) di kaki kiri.
  • Sadapan III adalah dipol dengan elektrode negatif (hitam) di lengan kiri dan elektrode positif (merah) di kaki kiri.
Sadapan ekstremitas tambahan
Sadapan aVR, aVL, dan aVF merupakan sadapan ekstremitas tambahan, yang diperoleh dari elektrode yang sama sebagai sadapan I, II, dan III. Namun, ketiga sadapan itu memandang jantung dari sudut (atau vektor) yang berbeda karena elektrode negatif untuk sadapan itu merupakan modifikasi terminal sentral Wilson, yang diperoleh dengan menambahkan sadapan I, II, dan III bersama dan memasangnya ke terminal negatif mesin EKG. Hal ini membidik elektrode negatif dan memungkinkan elektrode positif untuk menjadi "elektrode penjelajah" atau sadapan unipolar. Hal ini mungkin karena Hukum Einthoven menyatakan bahwa I + (-II) + III = 0. Persamaan itu juga bisa ditulis I + III = II. Ditulis dengan cara ini (daripada I + II + III = 0) karena Einthoven membalik polaritas sadapan II di segitiga Einthoven, mungkin karena ia suka melihat kompleks QRS tegak lurus. Terminal sentral Wilson meratakan jalan untuk perkembangan sadapan ekstremitas tambahan aVR, aVL, aVF dan sadapan prekordial V1, V2, V3, V4, V5, dan V6.
  • Sadapan aVR atau "vektor tambahan kanan" memiliki elektrode positif (putih) di lengan kanan. Elektrode negatif merupakan gabungan elektrode lengan kiri (hitam) dan elektrode kaki kiri (merah), yang "menambah" kekuatan sinyal elektrode positif di lengan kanan.
  • Sadapan aVL atau "vektor tambahan kiri" mempunyai elektrode positif (hitam) di lengan kiri. Elektrode negatif adalah gabungan elektrode lengan kanan (putih) dan elektrode kaki kiri (merah), yang "menambah" kekuatan sinyal elektrode positif di lengan kiri.
  • Sadapan aVF atau "vektor tambahan kaki" mempunyai elektrode positif (merah) di kaki kiri. Elektrode negatif adalah gabungan elektrode lengan kanan (putih) dan elektrode lengan kiri (hitam), yang "menambah" sinyal elektrode positif di kaki kiri.
300px-EKGI Sadapan ekstremitas tambahan aVR, aVL, dan aVF diperkuat dengan cara ini karena sinyal itu terlalu kecil untuk berguna karena elektrode negatifnya adalah terminal sentral Wilson. Bersama dengan sadapan I, II, dan III, sadapan ekstremitas tambahan aVR, aVL, dan aVF membentuk dasar sistem rujukan heksaksial, yang digunakan untuk menghitung sumbu kelistrikan jantung di bidang frontal.
Sadapan prekordial
Penempatan sadapan prekordial yang benar.
Sadapan prekordial V1, V2, V3, V4, V5, dan V6 ditempatkan secara langsung di dada. Karena terletak dekat jantung, 6 sadapan itu tak memerlukan augmentasi. Terminal sentral Wilson digunakan untuk elektrode negatif, dan sadapan-sadapan tersebut dianggap unipolar. Sadapan prekordial memandang aktivitas jantung di bidang horizontal. Sumbu kelistrikan jantung di bidang horizontal disebut sebagai sumbu Z.
Sadapan V1, V2, dan V3 disebut sebagai sadapan prekordial kanan sedangkan V4, V5, dan V6 disebut sebagai sadapan prekordial kiri.
Kompleks QRS negatif di sadapan V1 dan positif di sadapan V6. Kompleks QRS harus menunjukkan peralihan bertahap dari negatif ke positif antara sadapan V2 dan V4. Sadapan ekuifasik itu disebut sebagai sadapan transisi. Saat terjadi lebih awal daripada sadapan V3, peralihan ini disebut sebagai peralihan awal. Saat terjadi setelah sadapan V3, peralihan ini disebut sebagai peralihan akhir. Harus ada pertambahan bertahap pada amplitudo gelombang R antara sadapan V1 dan V4. Ini dikenal sebagai progresi gelombang R. Progresi gelombang R yang kecil bukanlah penemuan yang spesifik, karena dapat disebabkan oleh sejumlah abnormalitas konduksi, infark otot jantung, kardiomiopati, dan keadaan patologis lainnya.
  • Sadapan V1 ditempatkan di ruang intercostal IV di kanan sternum.
  • Sadapan V2 ditempatkan di ruang intercostal IV di kiri sternum.
  • Sadapan V3 ditempatkan di antara sadapan V2 dan V4.
  • Sadapan V4 ditempatkan di ruang intercostal V di linea (sekalipun detak apeks berpindah).
  • Sadapan V5 ditempatkan secara mendatar dengan V4 di linea axillaris anterior.
  • Sadapan V6 ditempatkan secara mendatar dengan V4 dan V5 di linea midaxillaris.
Bersambung …..
Bila ingin mencari cara cepat memperoleh artikel ini Silahkan Downloads Artikel Diatas Secara Gratis Klik disini

Kupas Tuntas Tentang Elektrokardiogram Bag. 2

Seleksi saring

Monitor EKG modern memiliki banyak penyaring untuk pemrosesan sinyal. Yang paling umum adalah mode monitor dan mode diagnostik. Dalam mode monitor, penyaring berfrekuensi rendah (juga disebut penyaring bernilai tinggi karena sinyal di atas ambang batas bisa lewat) diatur baik pada 0,5 Hz maupun 1 Hz dan penyaring berfrekuensi tinggi (juga disebut penyaring bernilai rendah karena sinyal di bawah ambang batas bisa lewat) diatur pada 40 Hz. Hal ini membatasi EKG untuk pemonitoran irama jantung rutin. Penyaring bernilai tinggi membantu mengurangi garis dasar yang menyimpang dan penyaring bernilai rendah membantu mengurangi bising saluran listrik 50 atau 60 Hz (frekuensi jaringan saluran listrik berbeda antara 50 dan 60 Hz di sejumlah negara). Dalam mode diagnostik, penyaring bernilai tinggi dipasang pada 0,05 Hz, yang memungkinkan segmen ST yang akurat direkam. Penyaring bernilai rendah diatur pada 40, 100, atau 150 Hz. Sebagai akibatnya, tampilan EKG mode monitor banyak tersaring daripada mode diagnostik, karena bandpassnya lebih sempit.
Kata sadapan memiliki 2 arti pada elektrokardiografi: bisa merujuk ke kabel yang menghubungkan sebuah elektrode ke elektrokardiograf, atau (yang lebih umum) ke gabungan elektrode yang membentuk garis khayalan pada badan di mana sinyal listrik diukur. Lalu, istilah benda sadap longgar menggunakan arti lama, sedangkan istilah 12 sadapan EKG menggunakan arti yang baru. Nyatanya, sebuah elektrokardiograf 12 sadapan biasanya hanya menggunakan 10 kabel/elektroda. Definisi terakhir sadapan inilah yang digunakan di sini.
Sebuah elektrokardiogram diperoleh dengan menggunakan potensial listrik antara sejumlah titik tubuh menggunakan penguat instrumentasi biomedis. Sebuah sadapan mencatat sinyal listrik jantung dari gabungan khusus elektrode rekam yang itempatkan di titik-titik tertentu tubuh pasien.
  • Saat bergerak ke arah elektrode positif, muka gelombang depolarisasi (atau rerata vektor listrik) menciptakan defleksi positif di EKG di sadapan yang berhubungan.
  • Saat bergerak dari elektrode positif, muka gelombang depolarisasi menciptakan defleksi negatif pada EKG di sadapan yang berhubungan.
  • Saat bergerak tegak lurus ke elektrode positif, muka gelombang depolarisasi (atau rerata vektor listrik) menciptakan kompleks equifasik (atau isoelektrik) di EKG, yang akan bernilai positif saat muka gelombang depolarisasi (atau rerata vektor listrik) mendekati (A), dan kemudian menjadi negatif saat melintas dekat (B).
Sedapan
325px-ECG_Vector.svg Ada 2 jenis sadapan—unipolar dan bipolar. EKG lama memiliki elektrode tak berbeda di tengah segitiga Einthoven (yang bisa diserupakan dengan ‘netral’ stop kontak dinding) di potensial nol. Arah sadapan-sadapan ini berasal dari “tengah” jantung yang mengarah ke luar secara radial dan termasuk sadapan (dada) prekordial dan sadapan ekstremitas—VL, VR, & VF. Sebaliknya, EKG baru memiliki kedua elektrode itu di beberapa potensial dan arah elektrode yang berhubungan berasal dari elektrode di potensial yang lebih rendah ke tinggi, mis., di sadapan ekstremitas I, arahnya dari kiri ke kanan, yang termasuk sadapan ekstremitas --I, II, dan III. Catat bahwa skema warna untuk sadapan berbeda antarnegara.

Bila ingin mencari cara cepat memperoleh artikel ini Silahkan Downloads Artikel Diatas Secara Gratis Klik disini

Kupas Tuntas Tentang Elektrokardiogram Bag. 1

Mungkin bagi kita EKG adalah barang yang sangat bermamfaat untuk mendeteksi irama jantung sehingga membantu penegakan diagnosis yang akan Dokter ambil dalam rangka mengobati pasien. Sambil istirahat sejenak, ada baiknya kita menelaah apakah EKG itu dan bagaimana cara kerjanya …..
Elektrokardiogram (EKG) adalah grafik yang dibuat oleh sebuah elektrokardiograf, yang merekam aktivitas kelistrikan jantung dalam waktu tertentu. Namanya terdiri atas sejumlah bagian yang berbeda: elektro, karena berkaitan dengan elektronika, kardio, kata Yunani untuk jantung, gram, sebuah akar Yunani yang berarti "menulis". Analisis sejumlah gelombang dan vektor normal depolarisasi dan repolarisasi menghasilkan informasi diagnostik yang penting.
  • Merupakan standar emas untuk diagnosis aritmia jantung
  • EKG memandu tingkatan terapi dan risiko untuk pasien yang dicurigai ada infark otot jantung akut
  • EKG membantu menemukan gangguan elektrolit (mis. hiperkalemia dan hipokalemia)
  • EKG memungkinkan penemuan abnormalitas konduksi (mis. blok cabang berkas kanan dan kiri)
  • EKG digunakan sebagai alat tapis penyakit jantung iskemik selama uji stres jantung
  • EKG kadang-kadang berguna untuk mendeteksi penyakit bukan jantung (mis. emboli paru atau hipotermia)
Elektrokardiogram tidak menilai kontraktilitas jantung secara langsung. Namun, EKG dapat memberikan indikasi menyeluruh atas naik-turunnya suatu kontraktilitas.
SEJARAH EKG
Muirhead Alexander Muirhead menghubungkan kabel ke pergelangan tangan pasien yang sakit untuk memperoleh rekaman detak jantung pasien selama kuliah untuk DSc-nya (dalam listrik) pada tahun 1872 di St. Bartholomew's Hospital. Aktivitas ini direkam secara langsung dan divisualisasikan menggunakan elektrometer kapiler Lippmann oleh seorang fisiolog Britania bernama John Burdon Sanderson.
Orang pertama yang mengadakan pendekatan sistematis pada jantung dari sudut pandang listrik adalah Augustus Waller, yang bekerja di St. Mary's Hospital di Paddington, London. Mesin elektrokardiografnya terdiri atas elektrometer kapiler Lippmann yang dipasang ke sebuah proyektor. Jejak detak jantung diproyeksikan ke piringan foto yang dipasang ke sebuah kereta api mainan. Hal ini memungkinkan detak jantung untuk direkam dalam waktu yang sebenarnya. Pada tahun 1911 ia masih melihat karyanya masih jarang diterapkan secara klinis.
Gebrakan bermula saat seorang dokter Belanda kelahiran Kota Semarang, Hindia Belanda (kini Indonesia) bernama Willem Einthoven, yang bekerja di Leiden, Belanda, menggunakan galvanometer senar yang ditemukannya pada tahun 1901, yang lebih sensitif daripada elektrometer kapiler yang digunakan Waller.
Einthoven menuliskan huruf P, Q, R, S dan T ke sejumlah defleksi, dan menjelaskan sifat-sifat elektrokardiografi sejumlah gangguan kardiovaskuler. Pada tahun 1924, ia dianugerahi Penghargaan Nobel dalam Fisiologi atau Kedokteran untuk penemuannya.
Meski prinsip dasar masa itu masih digunakan sekarang, sudah banyak kemajuan dalam elektrokardiografi selama bertahun-tahun. Sebagai contoh, peralatannya telah berkembang dari alat laboratorium yang susah dipakai ke sistem elektronik padat yang sering termasuk interpretasi elektrokardiogram yang dikomputerisasikan.
Kertas perekam EKG
325px-ECG_Paper_v2.svg Sebuah elektrokardiograf khusus berjalan di atas kertas dengan kecepatan 25 mm/s, meskipun kecepatan yang di atas daripada itu sering digunakan. Setiap kotak kecil kertas EKG berukuran 1 mm². Dengan kecepatan 25 mm/s, 1 kotak kecil kertas EKG sama dengan 0,04 s (40 ms). 5 kotak kecil menyusun 1 kotak besar, yang sama dengan 0,20 s (200 ms). Karena itu, ada 5 kotak besar per detik. 12 sadapan EKG berkualitas diagnostik dikalibrasikan sebesar 10 mm/mV, jadi 1 mm sama dengan 0,1 mV. Sinyal "kalibrasi" harus dimasukkan dalam tiap rekaman. Sinyal standar 1 mV harus menggerakkan jarum 1 cm secara vertikal, yakni 2 kotak besar di kertas EKG.
Bersambung …..
Bila ingin mencari cara cepat memperoleh artikel ini Silahkan Downloads Artikel Diatas Secara Gratis Klik disini